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ABSTRACT

This work presents the design and application of a high-fidelity linear fractional representation
(LFR) of the bending modes of a multi-stage launch vehicle. Such LFR allows to reconstruct
from the mass and stiffness of each structural component the modal eigenfrequencies, deflections
and rotations. The proposed LFR manages to duplicate within a generalized state space model of
the launcher what would otherwise be only an outcome of a Monte Carlo (MC) analysis carried
out with a Finite Element Model (FEM). As a consequence a robust design of the bending filters
can now be carried out with further understanding of the flexibility of the launcher at system
level. With this methodology, a worst case analysis can now provide worst case perturbations
directly considering the stiffness budget parameters. It is also possible to predict the impact of
any stiffness budget variation on stability. This further insight allows to include payload variability
in the definition of such LFR. Ultimately, enabling: (1) the definition of generic LFRs for a launch
vehicle; (2) the possibility to provide an availability certificate on the control law that allows to
assess its robustness to last minute changes; (3) the design of robust control laws exploiting such
availability metric. Results are presented taking VEGA-E as a benchmark.

1 INTRODUCTION

Today, there is an ever growing and competing satellite transportation market, featuring a large vari-
ety of satellite transportation solutions that include small launchers, piggyback systems, space tugs,
air-lifted systems, etc. In this context, a crucial aspect for the deployment of a competitive expendable
launch vehicle is to make its recurrent GNC tuning effortless. Ideally, the tendency in terms of GNC
algorithms is to simplify and reduce the missionization effort to the minimum. This is particularly
necessary for European launch systems offering ride-share missions such as the VEGA Small Space-
craft Mission Service (SSMS) [19].
Indeed, the design of such algorithms should reconcile different needs: (1) flexibility by allowing
payload (PL) changes or swaps without requiring extra tuning efforts; (2) simple and robust concepts
in order to simplify the required validation and verification (V&V); (3) designs guided by a higher
level of understanding at system level.
Indeed, last minute changes or payload swaps may have an impact on the global bending modes and
therefore may require a re-tuning of the bending filters to guarantee full compliance to both stability
and noise attenuation requirements. According to the aforementioned design needs, design solutions
such as adaptive notch filters that are hard to validate or adaptive attitude control laws that require the
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tuning of additional spectral dampers for the bending modes [9] have been discarded.
The approach is to not change VEGA’s control architecture [6], but rather to achieve a robust tuning
of the controller and understand how robust it could be to payload changes. To challenge this goal a
high-fidelity linear fractional representation (LFR) of a flexible launch vehicle has been designed.
Indeed, LFRs have been successfully applied in aerospace applications. In [4] it has been shown, by
means of flight data, that LFRs robustly allow to predict the flutter envelope on the F-16A/B in Heavy
Store configuration. In [8] LFRs have been applied for the design of the controllers of a blended wing
body aircraft including both dutch-roll and flexible modes. Finally, in [11] a co-design of a large
satellite flexible structure has been carried out by applying LFR modelling and by designing a robust
reduced order H∞ controller to meet pointing and mass requirements. This work paved the way for
the development of a specific Satellite Dynamics Toolbox for preliminary design phases [16].
As for launchers, a lot of effort has been put in this direction in the past years [10]. It is needed to
mention also [12] where LFRs have been used to carry out structured singular value analysis. More-
over, [15] has actually proven the possibility to carry out structured-H∞ tuning with an LFR of a
launch vehicle.
Given these very promising results, an advanced design tool has been recently developed [20]. This
tool also provides further insight and understanding of the underlying fundamental design trade-offs
at system level, allowing a robust definition and justification of such system requirements. It includes
also the definition of a formal approach for uncertainty quantification and modelling, blending to-
gether statistical interpretations, system-level margins and a control-theoretic understanding by using
linear fractional representations (LFRs). By defining a generic multichannel design model, all high-
level technical specifications for the control system are mathematically formalized, enabling robust
optimization and worst case analysis. Specific practical difficulties for an effective industrialization
such as the need to smoothly schedule the control laws, controller discretization and the curse of di-
mensionality have been fully addressed with efficient workarounds.
This article shows how this tool has been used for the design of a high-fidelity LFR of the flexible
launch vehicle, enabling the possibility to carry out an availability-aware tuning of the bending filters,
extending the design’s robustness to last minute changes at mission level, ultimately reducing the
chances of having to carry out any recurrent bending filter tuning at all.
To demonstrate the proposed concept, the work has been applied considering VEGA-E as a bench-
mark (see Fig. 1). This launcher is currently in the development phase and is aiming at capturing the
small-satellites market. The launcher will have a three stage configuration, leveraging on the P120C
and Z40 motors developed for VEGA-C and a new upper stage called M10, which will use liquid
oxygen and liquid methane as propellants.
The paper is organized as follows. In section 2 the process of constructing a high-fidelity LFR [20]
is discussed. In particular, in section 2.4 the process of building the LFR of the bending modes,
including both the modal eigenfrequencies and shapes from the MC of the launcher Finite Element
Model (FEM) is described. In section 3 the general methodology [20] for controller optimization
and worst case analysis is introduced. In section 4 worst case analysis with an off-the-shelf bending
filter is shown. Moreover, by setting the uncertainties on the payload configuration an availability
certificate is computed and justified. Finally, the complicated task of designing availability-aware
control laws is solved.

2 HIGH-FIDELITY LFR OF A LAUNCH VEHICLE

In this paper, the linearized launcher equations [7] are not presented for the sake of brevity. The focus
is not on the state space model, but on the generalized state space model that includes the parametric
uncertainties. Previous works [12] [15], feature bending parameter LFRs that have been defined with
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Figure 1: VEGA-E Launcher

lump sum system-level margins, ignoring which are the driving parameters that yield uncertainty or
variety. In this work, a practical implementation of the proposed new paradigm [20] is shown, proving
the industrial benefits of a modelling and design technology supported by system-level knowledge.
Indeed, the MC analysis discussed in section 2.4 has not been computed to just identify the ranges
for such parameters, but to model the MC within the generalized state space model itself.
This is carried out with a methodology [20] that works out just the same for the remaining parameters
of the linearized model: the mass, centre of gravity, inertia, thrust, etc. We may summarize this
methodology by describing the key steps:

1. The data package shall be standardized; the input scatterings χj of the MC shall be indepen-
dent, time-invariant and defined in the closed interval [−1, 1]; in this sense, we may call such
scatterings ”fundamental scatterings”.

2. MC analyses is performed in order to measure each i-th dispersed output parameters pi needed
to characterize the linearized state space model and return such parameters with respect to an
appropriate scheduling variable.

3. It is more practical to not model negligible correlations between parameters. Thus, we compute
the Pearson Correlation Coefficients (PCC) between the fundamental scatterings and the dis-
persed output parameters of the MC. By setting a threshold on the PCCs, it is easy to understand
which correlations need not to be modelled. This yields for each i-th parameter pi a subset of
meaningful fundamental scatterings Ai.

4. Each parameter is assumed to be correlated by a subset of fundamental scatterings by means
of a linear regression model (see the correlated approach in [6]). This assumption is deemed
reasonable since such dispersions are usually smooth mappings around the nominal values. The
linear modelling of the i-th parameter is defined as:

pi = pi0 +
ri − ri

2
+

∑
j∈Ai

βijχj +
ri + ri

2
ρi (1)

Where in Eq. 1, pi0 is the mid-range value obtained from MC analysis, ri and ri are respectively
the upper and lower bounds of the residual of the linear regression model, βij is the regression
slope and ρi is the residual scattering parameter. The model in Eq. 1 is always a balance
between two design knobs: the threshold on the PCCs that quantifies how many dependencies
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are to be modelled and a threshold on the residuals that avoids having to include residuals
when negligible. By lowering the threshold on the PCCs more dependencies are modelled:
conservatism is decreased. By lowering the threshold on the residuals, the larger is the total
range of pi: conservatism is increased.

5. The two sets of uncertain parameters χj∈Ai
and ρi form the ∆i of the LFR of pi, thus we may

consider each parameter to be modelled by:

pi =Mi ⋆∆i (2)

Where in Eq. 2, Mi is the completely nominal part of the LFR and the ⋆ symbol represents the
Redheffer star product.

2.1 Trajectory Dispersions

The number of repetitions of a given fundamental scattering in the generalized state space model
allows to have a gut-level understanding of a design driver’s influence on the complete dynamics.
This is especially the case for the fundamental scatterings that affect the launcher secular dynamics
when linearizing the system equations.
Take as an example the engine dispersions of a solid rocket motor [6]:

T = T0 (t
∗)

(
1 + χmp

)
(1 + χISP )

1 + χtc

(3)

ṁ = ṁ0 (t
∗)

1 + χmp

1 + χtc

(4)

t∗ =
t

1 + χtc

(5)

Where χtc is the combustion time scattering, χISP is the specific impulse dispersion, χmp is the
dispersion on the initial propellant mass, T is the thrust, T0 is the nominal thrust, ṁ is the mass
flow, ṁ0 is the nominal mass flow and t∗ is the time scheduling dispersion. Indeed, it is particularly
interesting to understand how the engine’s fundamental scatterings affect the other parameters of the
system such as the non-gravitational acceleration g, the Mach number (M), thus the aerodynamic
center of pressure xcp, aerodynamic normal force coefficient derivative (cnα) and aerodynamic axial
foce coefficient (ca), just as much as the relative velocity Vrel and therefore the dynamic pressure Q.
The propagation of all such dependencies is often very complex and at times even interrelated. We
may say in this sense that the secular dynamics’ dispersion, which indeed accounts for an important
part of the uncertainty due to linearization, is now embedded in the generalized state space model.
In practice, by following the steps described in section 2, a simplified simulator is used to compute
a computationally cheap 3DOF MC analysis [6] that allows to characterize with sufficient precision
the trajectory dispersions and therefore the impact of the fundamental scatterings that affect the point-
mass dynamics:

1. Propulsive scatterings (see Eq. 3, Eq. 4 and Eq. 5);

2. Mass budget scatterings;

3. Aerodynamic modelling scatterings;

4. Atmospheric modelling uncertainties;
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The choice is to consider as scheduling variable the non gravitational velocity (VNG), as this is the
scheduling variable of the control law too [6].
Thus, a post-processing is carried out by computing the PCC and effectively neglecting the not mean-
ingful correlations. Finally, Eq. 1 allows to compute the linear regression model of the parameters of
the system pi and therefore define the LFRs.
With this approach [20], conservatism due to trajectory dispersions is dosed in a formal way, without
having to support the scattering policy with conjectures around possible worst-cases for specific de-
sign requirements or tuning goals.

2.2 Rigid Dynamics

If the MC computed in section 2.1 is carried out on a cheap 3DOF simulator, some work is still needed
to extend the analysis to properly model the rotational dynamics.
Firstly, the dispersions on the centre of gravity and moments of inertia need to be computed. This
is carried out by firstly computing a MC over the mass, centre of gravity and moments of inertia at
system level, considering the ”program phase” maturity margins of each item of the mass budget.
Secondly, the outcome of the MC is resampled considering the dispersions on the mass flow (see
Eq. 4). It must be highlighted that since we are aiming with the high-fidelity LFR at defining an
availability certificate for the control system, the mass and position of the payloads will certainly be
fundamental scatterings driving the LFRs of the MCI (mass, center of gravity and moment of inertia).
A more complex aspect is the aerodynamics modelling.
Indeed, the trajectory dispersions described in section 2.1 allow to compute the dispersions on the
Mach number (M). Thus, by re-sampling the aerodynamic coefficients, the fundamental parameters
that affect the (M) may be modelled in the LFRs of the aerodynamic parameters or accounted for in
the residuals.
Nevertheless, in general, the aerodynamic parameters xcp and cn depend also on the Reynolds number
(Re), the roll angle φ and the angle of attack α.
The dispersed (Re) has not been taken from the dispersed trajectories. Contrary to the (M), the cur-
rent aerodynamic data package does not allow to look-up its effect upon the aerodynamic parameters.
The same consideration is applied for what concerns the effect of φ, that accounts for geometric pro-
trusions that make the launcher not perfectly axially symmetric.
The aerodynamic coefficients are provided as functions of the (M) and α only. Nevertheless, these
remaining effects are considered in the total modelling uncertainty of these parameters, provided by
an aerodynamic system margin.
The effect of α could be embedded in the LFR by considering it both as a variable α and an uncertain
parameter δα, to be included in the total ∆ of the generalized state space model [3]. This would al-
low to model the correlation due to α, providing a less conservative modelling of the aerodynamics.
Again, this is a more accurate representation of linearization uncertainty enabled by the generalized
state space model.

2.3 Sloshing

It is worth to note that dispersed pi may trigger also other parametric dispersions. For instance, g
affects the slosh modal frequencies ωsj and damping ratio ζsj . Indeed, these parameters need to
be scaled in order to comply respectively to the Froude number (Fr) and Reynolds number (Re)
mechanical similarities.
Of course, the slosh model would anyhow be dispersed also by other fundamental scatterings to
consider its intrinsic modelling uncertainty.
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2.4 Bending Analysis

In this section, the process of constructing the LFRs of the bending parameters is described. Since
the goal of this activity was to essentially prove a concept, the analysis was carried out, without loss
of generality, with a simplified finite element model built upon 1D beam elements. A more detailed
analysis can be carried out in the future considering a high-fidelity FEM model of the launcher.
The computation of the global bending modes has been carried out with the reduced-body approach
for what regards sloshing, yet considering the actuators to be locked [17]. Indeed, the choice of
improving the modelling accuracy with the reduced-body approach, implies that the modal analysis
has been carried out by removing the slosh masses msj of the uncertain mechanical equivalent model
for sloshing. Hence, as a consequence the slosh modelling uncertainty impacts also the bending
uncertainty to a certain extent.
In a specific mission, the payload configuration is more or less known. Nevertheless, since in this work
we are interested in verifying robustness to payload variability, we shall consider a MC spanning all
possible PL configurations according to the high-level system specifications.
To construct the LFR, a MC (N=2000) of the FEM model has been computed by scattering:

1. the stiffness EI of each item of the launcher stiffness budget

2. the non-structural inert masses of each stage;

3. the sloshing masses msj of the Vega upper stage (VUS);

4. the payload properties including the centre of gravity xPL, fundamental lateral bending fre-
quency fPL and mass mPL;

Thus, the FEM analysis allows to identify the bending eigenfrequencies ωbi and modal shapes ϕi. In
reality, the flexible launch vehicle model for GNC studies requires only the knowledge of the modal
translations ψi and rotations σi in specific points of application along the launcher centerline: the
engine pivot point xPV P , the position of the inertial navigation system xINS and the j-th slosh mass
equilibrium points xsj . All such points are also dispersed and therefore the dispersed bending param-
eters of the FEM analysis are sampled accordingly over the centerline.
It is highlighted that the FEM analysis does not consider engine dispersions on the mass flow ṁ, that
is affected by the engine fundamental scatterings in Eq.4. Nonetheless, these dispersions do have
an effect on the bending modes. This is handled by considering the dispersed bending parameters
returned from the FEM analysis to be scheduled with a nominal mass flow. The dispersed mass flows
ṁ (see Eq. 4) returned from the MC analysis described in section 2.1, would be propagated by simply
interpolating the dispersed bending parameters with the measured mass flows of the MC. If the PCC
for a given bending parameter pi is above the user defined threshold, then χmp and χtc may explicitly
be modelled in the LFR. Otherwise, the effect may be anyhow considered with the bending parame-
ters’ ρi.
As for the bending frequencies’, shift due to thrust [17] is neglected as it is a very small effect on
VEGA launchers.

2.5 Actuator Model

An important element for the verification of stability and robustness margins related to bending is
provided by the actuator model, as it has an important effect in the frequency range of interest. The
reader is referenced to [5] for a detailed 2-DOF modelling of the actuator. To simplify the most possi-
ble the size of the model, parameters that are dependent to thrust are left uncorrelated. The small-loop
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controller also contributes very much to the size of the model, yet it only contributes to the nominal
part of the generalized state space model. To robustly compress this part, a balanced truncation of the
nominal part of the actuator subsystem is carried out.
Since the thrust vector control (TVC) is assumed to be ”prescribed”, the dog-wags-tail effect is ne-
glected, though the effects of nozzle angular rotations on the rigid dynamics (tail-wags-dog effect) is
kept.

3 METHOD

This section shortly describes the general method introduced in [20]. Firstly, in order to carry out
any sort of dynamic programming with the LFR of the flexible launcher, it is needed to formalize
all high-level technical specifications as mathematical functions, i.e.: as low level requirements. All
such low level requirements are modelled to be bounds over H2 or H∞ norms to be verified with the
high-fidelity LFR.
The solver [13], SYSTUNE, is commercially available in Matlab and allows to solve the following
dynamic programming problem:

min
x

max
δ

(αf(x, δ), g(x, δ)) (6)

where, in Eq. 6, x is a vector of tunable parameters in the control law that are all defined in given
intervals, δ is a vector of uncertain parameters (that make up the ∆ of the LFR), f is a low-level
objective function, g is a low-level constraint function and α is a multiplier that the solver adjusts in
order to force the solution to the original constrained optimization problem.
The subproblem,

max
δ

(f(δ)) (7)

is what we refer to as worst case (WC) analysis and is verified one requirement f(δ) at a time.
The high-fidelity LFR of the launcher features a very large ∆ (its size is ∼ 700). The problems in Eq.
7 and especially Eq. 6 appear to be computationally not feasible because of the well-known curse of
dimensionality. The technological enabler in this case is given by what Apkarian calls the ”dynamic
inner approximation” method [13]. As it allows to formally carry out sensitivity analyses for each
iteration step, by defining an ”active scenario” without lacking overall robustness.
In [20], the setting described in Eq. 6 is used to tune the complete control laws achieving robustness
both in terms of stability margins and load relief. In this article we shall focus on the sub-problem
that concerns the synthesis of the bending filters, to show the effectiveness of a high-fidelity LFR of
the bending modes.
For this sub-problem, the high level requirements to be verified are the following [6]:

1. Low Frequency Delay Margin (LFDM)

2. High Frequency Gain Margin (HFGM)

3. Fundamental Bending Mode Delay Margin (BM1DM)

4. Upper Bending Modes’ Gain Attenuation (BMU Att.)

All such requirements need not to be necessarily verified only by analysing the open-loop return
difference Li = KG , but can also be verified in closed-loop [1] by analysing the sensitivity function
Si = (I + Li)

−1 and complementary sensitivity function Ti = Li (I + Li)
−1. Indeed, this allows to

define templates [2] that enable a more robust low-level verification of stability. In practice, this is
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carried out by verifying the tuning in a closed-loop multichannel design model [20] where the Si and
Ti can be taken by selecting specific input and outputs.
The HFGM is the highest real amplification gauge gain that can be added to the input break-point
without having the return difference cross the critical point. Therefore the HFGM is verified by
complying to:

fGM = |Ti|∞ ≤ 1

GM − 1
(8)

gGM = |Si|∞ ≤ GM

GM − 1
(9)

Where in Eq. 8, |T |∞ is considered as the objective function instead of |S|∞ essentially because the
complementary sensitivity function is more ”sensible” and may add non-necessary conservativism to
the optimization problem.
The LFDM is the highest delay that can be added to the input break-point without having the return
difference cross the critical point at a frequency lower than that of the first bending mode. Whereas
the BM1DM is conceptually the same, but verified around the first bending mode frequency. Both
DMs are verified formally by complying to:

|Si|∞ ≤ 1

2 sin PM
2

(10)

|Ti|∞ ≤ 1

2 sin PM
2

(11)

Contrary to Eq. 9 and Eq. 8, the delay margin requirement is frequency-dependent, because

PM =
180

π
DMω (12)

In general, the sensitivity function S is more “sensible” at the lower frequencies, whereas the com-
plementary sensitivity function T at the higher frequencies. While for the HFGM we already know
which function is most severe; for the LFDM this is not the case. This very much depends on the
perturbations that may affect the system and the design of the control laws. As for the BM1DM, the
low-level requirement on the sensitivity function is more sensitive in the “half-plane” of the Nichols
chart in which open-loop gain is negative, whereas the complementary sensitivity function is more
sensitive where the open-loop gain is positive. This implies that by setting the complementary sen-
sitivity function as a constraint the optimization will not attempt to gain control the bending mode,
while it shall optimize the sensitivity function to phase-control by design.
The BMU Att. requirement is essentially a margin on the passive stabilization of the upper bending
modes. The desired attenuation gain Lu on the return difference Li is is verified by complying to:

gBMU = |Ti| ≤ | Lu

1 + Lu

| (13)

It is worth mentioning that the low-level requirement in Eq. 13 is more conservative than the high-
level requirement on the return difference matrix, |Li|∞ < Lu, as it adds more severity around the
critical point providing additional robustness to the controller.
It may be noticed that the approach [20] is to consider verifying stability requirements both with the
Si and the Ti. Alternatively, the designer could choose to verify margins with the disk margin policy
that effectively mixes the the two sensitivities by tuning the skew parameter [18].
Nevertheless, the disk margin is defined as the largest complex multiplicative factor that makes the
Li cross the critical point, which in general accounts for a mixed gain-phase perturbation. Compared
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to classic evaluations of gain and phase margins, the disk margin offers the advantage of being more
robust, since a small combined perturbation could quickly degrade the pure gain and phase margins.
Yet by verifying the stability margins with the Si and Ti this is also prevented. The choice is to
disregard disk margins because it is less easy to reconstruct from a disk margin low-level requirement
a high-level system requirement on the gain and phase margins. In an industrial context, it is very
important to not loose a direct connection with the classic high-level requirements that are understood
by non-specialist system engineers. Moreover it is also useful from a system engineering point of view
to understand which perturbations degrade stability both from a dominantly gain and phase point of
view, rather than the combined effect.

4 APPLICATIONS

As it has been mentioned, the work in this article has been carried out considering VEGA-E as a study
case. In this regard, it was believed [14] that for future European launchers the tuning and verifica-
tion of the bending filters, meeting the BM1DM and the BMU Att. requirements, was necessarily a
mission-dependent activity.
On the contrary, this work proves that the high-fidelity LFR discussed in section 2 enables the de-
signer to formally define an availability certificate that allows to measure to what extent a given
tuning may be considered applicable to different payload configurations. Such metric can also be
used to optimize the control tuning in order to increase the availability metric making the controller
tuning more generic and therefore overcome the mission-dependency of the controller. This example
shows how effective is the LFR-based paradigm [20] compared to designs carried out with ”corner
case” multi-models or pre-defined worst case models. The difference is essentially in the additional
system level understanding, that other methods can’t provide. Moreover, a formal verification of the
worst cases by means of LFRs prevents the designer from not recognizing changes in the worst case
perturbations that are triggered by changes in the controller tuning. Such tool [20] allows the designer
to introduce improvements in the control laws with a much higher level of confidence, without fearing
the consequences of finding unexpected behaviors in the final verification and validation phase.

4.1 Worst Case Analysis

The general approach [20] is to consider the same low-level requirements for both the tuning and
verification of the system requirements. This is what effectively allows the designer to trust the
methodology making it a design paradigm.
As an example, we have solved Eq. 7 by applying the high-fidelity LFR described in section 2 on a
previous tuning tailored to a specific max payload configuration. Results are reported in Table.1 as
weighted requirements: any requirement previously described as |Si|∞≤ W or |Ti|∞≤ W becomes
respectively |W−1Si|∞≤ 1 or |W−1Ti|∞≤ 1.

Table 1: Worst Case norms for a tuning tailored to a max payload configuration

Requirements
Channel LFDM HFGM BM1DM BMU Att.
Ti 0.64 0.84 1.77 0.76
Si 0.80 0.76 0.84 -

It can be clearly seen that this controller is not compliant to the BM1DM requirement. This was
expected, because the payload mass adds a shift to the first bending mode frequency, compromising
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its active stabilization. Indeed, by solving Eq. 7 we also obtain the worst case perturbation for each
requirement (see Figure 2), a precious outcome of the analysis that adds a layer to the system-level
understanding in the design trade-offs.

Figure 2: Worst Case Analysis

4.2 Availability Certificate

The high-fidelity LFR of the launcher described in section 2 explicitly features the payload mass χmPL

and the centre of gravity χxPL
, whereas the effect of the payload lateral frequency fPL was not found

to be worthy of being modelled (its PCC is below the threshold). For the verification of the BM1DM
and BMU Att. requirements the driver is definitely the χmPL

, thus we can define the availability
certificate problem as follows:

AV = max
I

max
δ

f(δ, I) (14)

Where χmPL
∈ I = [µl, µu]. The dependency of f to I is given by the fact that the BM1DM and

BMU Att. requirements are verified in frequency ranges that effectively depend on I . The problem
in Eq. 14 is only apparently much more complicated than that defined in Eq. 7. It can be solved
by firstly considering the largest interval [−1, 1] and solving Eq. 7 by computing the worst case δ:
this is obviously more conservative, but such extra conservativism in the computation of AV can be
removed by carrying out a simple post-processing on the result. If AV = [−1, 1], the availability
certificate states that the controller can fly any possible payload configuration considered at system
level. If by solving Eq. 7 it appears that AV ⊂ [−1, 1], the effective I needs to be refined. This can
be carried out by progressively reducing the µl and µu from −1 and 1 to 0 until all weighted require-
ments f are fulfilled. In this post-processing, the worst case δ is anyhow fixed except for χmPL

, as it
is only a matter of finding the critical range for χmPL

.
Take as example the mission-specific tuning analyzed in section 4.1. In this case, AV = (0.6, 1],
which can be easily mapped back to the system-level interval, [mPL, mPL]. In Fig.3, a Nichols chart
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showing the worst case perturbation on the BM1DM is included, comparing the worst case perturba-
tion obtained by solving Eq. 7 with that obtained by computing the availability certificate in Eq. 14.
For very tight design problems, an availability certificate can be considered by mission managers to
understand the impact of last-minute payload configurations at a controllability level, without having
to perform any assessment both in terms of FEM modal analysis and control system tuning.

Figure 3: A Nichols Chart Showing the AV

4.3 Generic Control Law Tuning

Now we want to optimize x in the attempt of having AV reach [−1, 1], or in other words we seek to
achieve a bending filter that is fully generic.
For this scope, we may compute Eq. 6 to optimize the bending filter H3 in the controller architecture
[6]:

H3(p) =
N∏
i=1

p2

ω2
Ai

+ 2 ηAi

ωAi
p+ 1

p2

ω2
Bi

+ 2 ηBi

ωBi
p+ 1

(15)

Where p is the Heaviside derivative operator.
By completing this task, all low-level requirements are met (see Table 2). It can be seen that the
BM1DM has been made compliant but at the expense of a better trade-off with the HFGM require-
ment. Yet, in this case, AV = [−1, 1], thus the new H3 filter is effectively generic.

Table 2: Worst Case norms after tuning with the proposed high-fidelity LFR

Requirements
Channel LFDM HFGM BM1DM BMU Att.
Ti 0.73 1.00 1.00 0.59
Si 0.88 0.85 0.64 -

The worst case perturbations for the generic tuning are shown in Figure 4.
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Figure 4: Worst Case Analysis with Generic Tuning

5 CONCLUSIONS

A new robust control paradigm [20] has been applied to define high-fidelity generalized state space
models for a flexible launch vehicle, allowing to provide to the mission management an availability
certificate on the control law that measures robustness to last minute changes in the payload configu-
ration. The generalized state space model enables also the possibility to robustly tune the controller
making it more generic.
The approach has been applied on a highly detailed design model, taking VEGA-E as a benchmark,
proving that the new paradigm can be industrialized on European launchers.
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